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Abstract

The abstract will go here.

1 Calculation of the flux of νµ from µ+ decays

Define the following terms:

• L denotes the integrated rate for ’low’ energy E < Ecut,

• H denotes the integrated rate for ’high’ energy Ecut < E < Ehi,

• E is the reconstructed neutrino energy,

• Ecut = 8 GeV, and

• Ehi = 16 GeV, nominally.

The value of Ecut is chosen such that the flux of νµ from µ+ → e+νµνe is
negligible above Ecut, and Ehi is chosen based on comparison of data and
simulation spectra above Ecut.

The beam flux φ of νµ due to µ+ → e+νµνe in units of νµ per proton-on-
target (POT)

φ(µ+ → νµ) ≡
[

Lµ+/Pd − (LMC
NC + LMC

ν + C × LMC
ν (π, K))/PMC

]

/ǫν (1)

where

• Lµ+ is the measured number of µ+ candidates,
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• LMC
NC is the estimated number of µ+ candidates due to NC interactions,

• LMC
ν is the estimated number of µ+ candidates due to νµ CC interac-

tions,

• LMC
ν (π, K) is the estimated number of µ+ candidates due to π+ and

K+ decays,

• C is a scale factor,

• Pd is the number of POT in the horn-on data,

• PMC is the number of POT in the horn-off data, and

• ǫν is the efficiency of νµ reconstruction.

All terms can have an implicit dependence on the reconstructed neutrino
energy. The estimated numbers are assumed to come from simulated (MC)
events.

The key to the measurement is an accurate estimate of the last term
in Eqn 1. We propose two approaches that should yield at least five semi-
independent estimates of the uncertainty in φ(µ+ → νµ). In the first ap-
proach, the shape of LMC

ν (π, K) is taken from simulation and corrected using
the scale factor C determined from a comparison of data and simulation. In
the second approach, we use the SKZPII parametrization [1] to adjust the
MC predictions of LMC

ν (π, K) and set C ≡ 1.

1.1 Estimating C

In this approach, we estimate C using horn-off data and MC at either ’high’
(CH,off) or ’low’ (CL,off) energy, or horn-on ’high’ (CH,on)energy data and MC.

1. For horn-off ’high’ energy data, define

CH,off ≡
{Hµ+

,off
/Pd,off − HNC,off/PMC,off − Hν,off/PMC,off}

{HMC
ν (π, K off)/PMC,off}

= {
PMC,off

Pd,off

Hµ+
,off

− HNC,off − Hν ,off}/H
MC
ν (π, K off) (2)

where
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• Hµ+
,off

is the measured number of µ+ candidates in horn-off data,

• HNC,off is the estimated number of µ+ candidates from NC inter-
actions in horn-off MC,

• Hν ,off is the estimated number of µ+ candidates from νµ CC
interactions in horn-off MC,

• HMC
ν (π, K) is the estimated number of µ+ candidates from νµ CC

interactions from π+ and K+ decays in horn-off MC,

• Pd,off is the POT in horn-off data, and

• PMC,off is the POT in horn-off MC.

2. For horn-off ’low’ energy data, analagously define CL,off ,

CL,off ≡ {
PMC,off

Pd,off

Lµ+
,off

− LNC,off − Lν ,off}/L
MC
ν (π, K off) (3)

3. For horn-on ’high’ energy data, define CH,on,

CH,on ≡ {
PMC,on

Pd,on

Hµ+
,on

− HNC,on − Hν ,on}/H
MC
ν (π, K on) (4)

1.2 Using the SKZPII parametrization

In this case the scale factor C is defined to be unity and LMC
ν (π, K) ≡ LSKZP

ν
is determined by fitting data with the standard SKZP [1] parametrization
but reduced number of fitted parameters:

1. LSKZP
ν (off) is determined from horn-off data after NC and CC ν back-

ground subtraction, without any cut on the reconstructed neutrino en-
ergy, and

2. LSKZP
ν (on) is determined from horn-on data after NC and CC ν back-

ground subtraction with the requirement that E > Ecut.

We denote the flux derived from the former by φSKZP,off and from the latter
by φSKZP,on.
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1.3 Uncertainty in the estimate of φ(µ+ → νµ)

In Sections 1.1 and 1.2, we defined five methods to estimate the flux of
νµ from π and K decays. We propose to compare the results obtained for
φ using these five methods to estimate the systematic uncertainty due to
the incomplete knowledge of Lν(π, K). In addition, we can change Ecut

and Ehi and repeat the five estimates to obtain an additional estimate of
systematic uncertainty due to the incomplete knowledge of Lν(π, K). We
then obtain a distribution of estimates of φ denoted by {φi} (i runs over
the different approaches and changes of the energy range). We can take the

mean (or median) of {φi} as the central value of A and either
√

Variance{φi}

or 1
2
(max{φi} − min{φi}) as the estimated systematic uncertainty in φ due

to the incomplete knowledge of Lν(π, K).
To estimate the systematic uncertainty due to ǫν , we propose to perform

the five estimates of φ described in the previous paragraphs while varying
the νµ selection criteria (varying the NuBarPID cut).

The systematic uncertainties in other quantities in Eqn. 1 are taken from
the work of others and is discussed in Section 1.4.

Rewrite Eqn 1 for C = CH,on dropping the “MC” superscript and defining
ron ≡ Pd,on/PMC,on and ǫ ≡ ǫν

φH,on =
1

ǫ

1

Pd,on

[

Lµ+ − ron(LNC + Lν)

−







Hµ+
,on

− ron(HNC,on + Hν,on)

Hν(π, K on)







Lν(π, K on)
]

(5)

The variance in φH,on is (dropping the “on” designation from the L, H , Pd

and PMC terms )

δφH,on ≈
∂φ

∂Lµ+
δLµ+ ⊕

∂φ

∂LNC

δLNC ⊕
∂φ

∂Lν
δLν ⊕

∂φ

∂Lν
δLν

⊕
∂φ

∂Hµ+
δHµ+ ⊕

∂φ

∂HNC

δHNC ⊕
∂φ

∂Hν
δHν

⊕
∂φ

∂Pd

δPd ⊕
∂φ

∂PMC

δPMC ⊕
∂φ

∂ǫ
δǫ . (6)
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where ⊕ means “add in quadrature”. The partial derivatives are

∂φ

∂ǫ
=

φH,on

ǫ

∂φ

∂Lµ+
=

1

ǫ

1

Pd

(7)

∂φ

∂Lν (π, K)
=

CH,on

ǫPd

∂φ

∂Hµ+
= −

1

ǫPd

Lν(π, K)

Hν(π, K)

∂φ

∂Lν
=

∂φ

∂LNC

= −
ron

ǫ

1

Pd

∂φ

∂Hν
=

∂φ

∂HNC

= −
ron

ǫPd

Lν(π, K)

Hν(π, K)

∂φ

∂Hν
(π, K) =

1

ǫPd

[

Hµ+ − ron(HNC − Hν)
] Lν(π, K)

H2
ν(π, K)

∂φ

∂Pd

=
1

ǫP 2
d

[ Hµ+

Hν(π, K)
Lν(π, K) − Lµ+

]

∂φ

∂PMC

= −
1

ǫP 2
MC

[ Lν(π, K)

Hν(π, K)
(HNC + Hν) − (LNC + Lν)

]

The νµ reconstruction efficiency for horn-on is defined as

ǫνµ
= N(µ+)/M(νµ) (8)

where N(µ+) is the number of µ+ candidates from νµ CC interactions in
horn-on MC and M(νµ) is the nubmer of νµ CC interactions in horn-on MC.
The uncertainties in the quantities in Eqn. 7 are

δǫ =

√

√

√

√

ǫ(1 − ǫ)

M(νµ)

δPd = gPd
Pd

δLµ+ =
√

Lµ+

(δLNC)2 = (
√

LNC)2 + (gNCLNC)2

(δLν)2 = (
√

Lν)2 + (gνLν)2

δLν(π, K) =
√

Lν(π, K)

δPMC ≡ 0 (9)

5



where the statistical and systematic uncertainties are given explicitly for
clarity. Analogous expressions hold for the H terms. The rationale for the
values of g to be used in the analysis are given in Section 1.4.

The evaluation of Eqn. 1 with C = CH,off or C = CL,off differs from Eqn. 5
because C is estimated from horn-off data and MC. For C = CL,off

φL,off ≡
1

ǫ

[Lµ+

Pd

−
LNC + Lν

PMC

− CL,off

Lν(π, K)

PMC

]

(10)

where CL,off is defined in Eqn. 3.and the uncertainty in φL,off is

δφL,off ≈
∂φL,off

∂ǫ
δǫ ⊕

∂φL,off

∂Lµ+
δLµ+ ⊕

∂φL,off

∂LNC

δLNC ⊕
∂φL,off

∂Lν
δLν ⊕

∂φL,off

∂Lν (π, K)
δLν(π, K)

⊕
∂φL,off

∂Pd

δPd ⊕
∂φL,off

∂PMC

δPMC ⊕
∂φL,off

∂CL,off

δCL,off . (11)

The evaluation of most of the partial derivatives is given in Eqn. 7. The
remaining terms are

∂φL,off

∂CL,off

= −
Lν (π, K on)

ǫPMC,on

(12)

and the uncertainty in CL,off requires the evaluation of the following partial
derivatives

∂CL,off

∂Lµ+

= −
∂CL,off

∂LNC

= −
∂CL,off

∂Lν
=

1

Lν(π, K off)

PMC,off

Pd,off

∂CL,off

∂Pd off

= −
Lµ+

Lν (π, K off)

P 2
MC,off

Pd,off

. (13)

Similar expressions hold for φH,off .
For the approach described in Section 1.2, δC = 0 since C ≡ 1 by defi-

nition, and the results in Equations 5, 6 and 7 can be used to evaluate the
uncertainties in φSKZP,on and φSKZP,off.

1.4 Other systematic uncertainties

1.4.1 Uncertainty in NC background

For the CC disappearance analysis, the uncertainty in the NC background is
taken to be 50% based upon studies of µ−-removed data and simulation [2].
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Using this guidance, we take gNC = ±100%. The uncertainty has been
doubled to take into account the possibility that the simulated NC events
that remain may differ from NC events selected in the data because the νµ

selection has been designed to achieve very high purity.

1.4.2 Uncertainty in νµ CC background

A conservative error of 15% in the total νµ cross section of NEUGEN3 is esti-
mated in Ref. [3]. We double this estimate to obtain gν = ±30% using similar
reasoning to that in the preceding section. In addition, note that gν = ±30%
is consistent with the level of agreement between the NEUGEN3 quasielastic
cross section (σQE = 0.930 × 10−38 cm2) and an analysis of QE ν-Carbon
data [3] of σQE = (0.720±0.010±0.030)×10−38 cm2. Given the background
suppression of the NuBarPID requirements, the charm component of the νµ

CC background is enhanced relative to the non-charm component. A visual
scan of 23 νµ CC horn-off MC events, yielded 4 events (17±8%) attributable
to charm. Assuming that 25% of selected νµ CC events are due to charm with
a production rate uncertainty of 100% and assigning a ±15% uncertainty to
the remainder yields a total uncertainty of ∼ 27% which is consistent with
gν = ±30%.

1.4.3 Uncertainty in protons-on-target

We follow the guidance of Ref. [4] and assume gPd
= ±3% for both horn-on

and horn-off data. We assume that there is no uncertainty in PMC.
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